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. S fNTﬁODUCTION _
> o - , )
‘ Applied mathemat1cs often involves™ the solution
of single equations or systems of equations. In this

. nodule we study a part:cular technique for sofv1ng

- S

equations in the context of’ functions on the real line..

The technique includes an iterative process. i.e., an
algorithm, that can be understdod and interpreted with
sedse pictorially and can be' impleménted readily on
}nexpensive and widely availaple calculators (program-
.ming featuré helpful but not necessary). We also

\ preseﬁf some examples of‘physical problems in which
these. equations arise. .

7/

. -~

T ' 2. THE PROBLEM

L. .+ The basic problem here is to solve equat1ons of
‘the form - C : . .
f) £(x) = x. . ' ‘

A solution of Equation (1) is called a fzxed poznt of

fh,geometr1cally, such a solution is a value of x for
‘o which the graph of the function y = £(x) crosses the

11ne y = x (see Figure 1). For example, if f(x) = x?,

T

fixed point

F \
\ Figure 1. Geometric interpretation
; . of a fixéd point.

RRIC . .. 8. .-

Aruitoxt provided by Eic:

Yo

then Equation (1) tgkes the form

x? ='x,

N ¢

which has two solutions (fxxed points), x = 0 and

~

x = 1. ‘ . -
. Equation (1) is more general than it may seem at
f1rst because ~any equation of the form ;
(2) g(x) =
may- be converted to the form (1) by adding x to both .
sides: .
) .
(i) g(x) + x = x,.

and Equation (3), which is equivalent to (2), is now:
of the form (1), with £(x) = g(x) + x. ‘' The method
presehted here may therefore be applied to find roots
of equations, as well as fixed points, *

' %. THE ALGORITHM

- . f

The iterative procéss that constitutes the basis of

1
) t

the contraction mapping principle is often called Pieard'd |

algorithm or simply iteration. The procéss is easy to

describe; foq a function f whose }anée is contained in
its domain, start with a point x, in the d.main, and then
successively reapply the function. That, is, let

{xn}:=1 be the sequence { ,

1) x = f(x ), x, = f(x ), x, f(x ), ue s

LI N

Under some/simple cond1t1ons that 1nﬁblve the con-

cept of a contraction (to be described later), the sequence'

defined in (4) converges to a fixed point of f(x); that

is, if we let x = 1im Xn» then
n-row

f(x) =
We shall formulate the defipition of a comtractiom——
and a statement of contraction mapping principle in Sec-

_tion 4, but first we illustrate the algorithm by some
simple’ examples, ° . 2

|
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-S.I‘ Example 1

N 4
. 'Let ué beg1n.y1th an example that is easy to see

-and for wh1ch we know the outcome in advance. Let

’*w f(x) = 3x + 2, and. suppose we wish to solve the equation

N

Sxf+ 2= x| . . . . LI

’

(see F1gure 2).

L

" By elementary algebrd, we know that

& X
Figure 2. Geometrical interpretation
\ . ) of Example 1.

T oaes I

’ /
-

the Solution is x = 3. To apply the Picard algorithm

we choose any starting po1nt, say X, = #5, and calculate

. siUccessive valdes of the function accordxng to,(4).

. your célculator.

The results are 1nd1cated in Table 1; check them on
- /z

.Ihe fixed point x = 3 is reached cerrect to four T
{Note that had we rounded to, two )

,places, we would have reached the solution to two places in

.placés in eleven steps.

"uonly five steps.)
’ i ] -

! Numerical -
T Approximation
;X N 5 Formgla ‘for f(x) . of fgfg »
Xee= 5. Il 1 (5) a2 0.3333 & x
fx‘l' ‘ 3 (.3333) + 2° 2.1111 = x;
1ok 3 (2.1111) + 2 . - 2.70870= x
X, 3(2.7037) + 2 29012 ., _
X, 3 (2.9012) + 2 . 20611 r
xs 3 (2.9671) + 2 2.9890 . '
x, T (2.9890)+ 2 . 2.9963 -
.ox, '3 (2.9963) + 2 2.9988 -
X, 3(2.9988) + 2 2.9960
Xq L1 (2.0960) « 2 2.9999
X10 | 31(2.9999) + 2 3.0000

' iq'éhown'in Figure 3..

TABLE 1

. Results of the Picard Process App:ued to
the Function in Example 1, with Xy = -5,

P

3 : -

B v

It is- important to understand the geometry of the
Picardf procedure.. When we let x, = £(x,) and then calcu-
latg f(x )}, the f}rst y-value becomes the new x-value, -
and then we move to a new y-value. This process can be
represenicd by a path in which we start at (x,, 0},

move vert1cqlly to (%, £(x, )) or (xo, x,), then move - .-

horizontally to (x,, x ), and then vert1c311y to
(x,, £(x,)), and so on. A picture of this procedure

7/ ’
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. ‘ Xy 3333
. ) . x2- a1
Flgure 3.

the function in Example 1, with Xy * -5,

’

£3- 2.7037

Geometric lnterpretatlon of the Picard procedure for

-

Exercise 1,

Use the beafd précedure to solve! the equation

%x -1 =x,

. ' lx
3 r ‘Example 2 . , ¢

! JSuppose we wish to solve the ‘equation

COSX'XI

P In” th1s case, the equation. is transcendental, and

' algebrazc man1pu1at1ons do not _yield a solution.

,.,A -reasonable approximation te the solut1on can be
obtained graph1ca11y Or, if you have tables for

for the p01nt where cos x = x (radians).

The CRC

-~ trigonometric finctions handy, you may simply scan .

,tables show that cos(.73) = .,7452 and cos(.74) = 7385
© SO0 we would expect the solution to be close to .74.

The Picard procedure for the equatioq Cos X = x
- can be 1mp1emented easily on many caiculators. -With

!

[

the calculator in the radian mode, start with x =0,

and regcatcdly calculate the crs1ne (see Tdble 2)

)

TABLE 2 -
Numerical Solution of the}Eﬁpation cos %% x.
. A Numerical
' . . , ApproxXimation
X Formula for f(x) -~ = —0of -£{x3
X, =0 ) cos 0’ {~.aooo = X,
xy 71 cody (1) .5403 = x,
X, - cos ('5403) .8576 = x,
X, , cos (.8575) .. 6543
X, cos (.6543) 7935 .o©
xg °© . cos (.7935) .7014
X, ,cos (. 7014) .7640
X, L e cos (. 7640) .7221
Xq ) cos (.7221) .7504
X, cos (.7504) - 7 .7314
[ ¢ .
94 - .
X, cos (.7391) S, L7393

+

~
~ *

The convergence for the equation of Example 2 was
much slower than for Example 1; this time 23 1terat1ons
were required for four place accuracy (11 for two place
accuracy). You may be able to see the reason for the
slow convergence by studying the geometric picture --
here -we "wind“around" the fixed po1nt, as shown in
Figure 4. . .

s \ »

i




equar.lon cosx = X.

. B
‘sK oo . e
- - Y >
! y=x
~ “ s . . o
T IN 5 —— g -43,1)
- L "° ) w - . -
AN 5
I 54,,86) - J/ (.86,.65)
- L {1,.54)
S l,l.( su..sh) =7 y=cosx *
A PN A g \: . ' R -
. & . ) o . I
4. | P, 7
- .‘!‘ ': I\ Ay 4 e ' ) 'w ‘
© T R Y | L 3 - -
- Ao T.5% ! X
AT 5 e o 1.5 2
% -0 . N
RN th'ure 4. Graph showlng the Plcard procedure for the

-

2

3.3 Exaﬁﬁle 3

Consider a, r1g1d bar that is hznged at ‘one end,
w1th the ‘other end free to swing. The bar has length
2 and uniform mass distribution, with total mass' m,
Let's =. e(t) be-the angle the bar makes with the vertical
;at t1me t. At the h1nged end\of the bar, there is a

pos1t1‘on. -We suppose also that @ downward -£or.ce_E acts
at the free end of ‘the bar. é bar is given an initial

N
©

inge. and spring

Figure 5. lllustratlon for

Example 3. -

s

v

u:~ .torsion spring that exerts -a force»of magnitude k6, where *
k is a _constant, to_ restore. fhe?barﬁxo.lxs .vertical rest. ____.__

°

" about the hinged end.)

" By Equation (5), with 6 set equal to zero, th

«

velocity 6 o and started into motion at t1me
(See F1gure S.)

t=

= 0,

If we neglect the gravitational force, the
equat1on of motion can be obtained by considering
this equation is

(angular) forces;

(5)

Fme2E - ko + 4F sin 6 =

1

0.

(The factor gnllz is the moment of inertia of the bar

If k < LF, then the system has
exactly one equilibrium 'position between 0 and =,

: n‘é équili-
brium position is characterized as the solution

(between 0 and w) of the equation ' -
\ .

. -ke + 2F sin 8 = 0,

Thus, the value of 6 that yields Eﬁd&iibiiﬁﬁ_is the .
positive solution of the equation '

%? sin x = X,
For example, if the values of £, F and k are such that
%F/k = 1.2, then we can find the equilibrium position
by the Picard algorithm, starting at x, = /6.

’ TABLE 3 , .

Numerical Resuits of the Picard Sequence
for 1.2 sin x = x, Starting at x, = /6.

. . Numerical Approx-
X . - Formula for f(x) 1matzon of f(x)
X, = ®/6 1,2 sin (n/6) o 0.6000 =
X, =..6 s 1.2 sin (.6). .6776 = x2
X, 1.2 sin (.6776) L7523,
X, . 1.2 sin (.7523) .8200 .
x, ... l.2-sip (.8200) .‘7773
. I e . -
X,, 1.2 sin (1.0267) P }ff}67
Lol

pes

.-




- ,_:Lw;ﬁ Consider thé function £(x) ==2x"+ 1.

Thus, in this case, the equilibrium position occurs near
1.0267 radians, or around 59°,

Y Exercise 2

Find the equillbrium position for the system in Example 3
when LF/k = 1,4,

4. CONTRAETION MAPFINGS

TN %
©

?

In this section we consiYer conditions under which
the Picard .algorithm can be used to solve equations.

"4.1 Example 4

We Know by
simple algebra that x = 1 is the solution of thé

equation 2x - 1 = x, However, when we try the algorithm
with x; > 1 or with x, < 1, we mové away from the solu-
tion (see Figure 6, and compare Example 1 and Figure 3).

‘

Figure 6: 1llustration for Ea;ample b,

~‘also contained in the interval I' for x in I, we say

It turn> our that this behavxor is related to the fact
that the slope of the line y = lx + 2 is less than 1
and the slope of the 11ne v = Zx - 1 is greater than 1,

.

as we see in the d1scuss1on below.

Let £ be a function that is defined on an interval
I which is of any ot the following types:

° {x: a <x <\b} where a < b are finite numbers;
) {x: x < b}, where b is finite; ; 7

"o {x: x> a}, where a is finite;
) the entire real line., -

Thus, we cons1der the interval I as the domain of f

(even though it may be that the formula for f can be

applied to a larger set). When the values f(x) are

that "f - maps I into I" and write £: I + I, (For

example, let f(x) = 7«’, and consider I = {x: 0 < x < 1}, ]
If x e I, then f(x) e I also, and so f: I +- I, In e
this example, we note that the natural domain of f is '

the whole 11ne, but we simply want to consider the

behavior of f(x) for values of x from 0 to 1. )

Let I be a real interval as descr1bed above, and
let £f: I + I, Then f is called a contractzon on I
if therc is a constant r such that 0 < r < 1 and for
all x,t in I we have - )

[£(x) - £(t)] <1 | x - ¢|.

4.2 Example 5§
Let £(x) =

all x,t we have

[£(x) - £(t)] = |[ X + 2] - [lt + ZP

1

3.

3x *+ 2, I the'whole line. Then for

Ix - t].
Thus, f is a contraction on I, withr =




. N . . "Hence there must be a uniqué'x in R such that
4.3 -Example 6 . - . . -1 .
- . . £ x) = x. . -
’ Let £(x) = 2x - 1, I the whole line. Then for . . ) . -
- any X,t we have But since the graphs of f and £ ! are symmetric in the . .
K K .o 11ne Y < X, X must also-be in I and we must have
lf(x) - ‘(t)l = J(2x-1) - (2t -1)] = 2|x - t].
f(x) = x. , -
‘Thus, f is not a contract;on-on I. o : .

4.4 Example 7

I

- - The-contraction mapping prineciple for the

. -eot ’ . _- . Let f(x) = 2x - 1, I the whole line. We saw in : N
- real line. Let I be a real interval of a type | . Example 6 that f is an expansion, with k = 2, The ) .
g \ indic?ted above, and f: 1 + I: If f_gs a con- "inverse function is defined also on I, and is given \
S\ traction on I, tpen the equation " by the formula _
o . f(x) = x ) e a £ (x) = %x t.%~ ) "\
TN T has a unique soiutioh in I, and this solution . v -
. may be. obtained by choos1ng any point X, in I, N Then £ is a contract1on on I, with constant :
- forming the. sequence ; ., T = 7 k- “The Picard algorithm now yields the

i solution of the equation T
Sex s ), X, = E(x), xy = £(x) e,

- - . . ’ x-{l:x

and passing to the limit. The solution is -7 2 ’
lim Xpe ’ which is.x = 1, as shown in Figure 7. (Compare and L
L n-+o . . *,

A proof of the contract1on mapping: prlnc1p1euis '
“presented in the Appendix,

. The « contract1on mapp1ng principle may~seem to be
restrzct;ve, but there are two important techniques )

for extending the app11cab\11ty.b First, we note that ~
if £ is defined on I, if £ is an expansion, i.e. for"

~ ’ 4

. all x,t we have . X < 1 j
£ x) - .£(t)] > k{|x - t : - . t
‘ B ¢ | > k| I . . H < ¥ oy xg > 1 ‘ =
. where k > 1, and if the range R of f contains I, then . / ) L - - .
S . . - ¢
- we must have the following: / ) N
> ‘= N - Ve . i o e ~
‘e " f is one-to one, so that. f ! is defined on R; - / -
- . -1 .
[ 'f':R+I,mm I cR,sof :R-+R; ) .
°® f'_1 is a contraction on R, with r = 1/k. Figure 7. The Picard algorithm for Example 7. ) .
. . . 11° . . . :

o 1
. . s 12
18 _ R SO




T . contrast with Figure 6.)  Since the equation

R . nh& be rewritten

. y“‘ ) of f

~ “ ~

-

e %x *%".x

o -,

- -
by . .

. Be
t2x -1 = x5
we have the solution. of the original problem\egsed
in EXahple 4.,

The second way in which we can extend the &pplica-
bility of the Picard algorithm:is by considering the
zterates of f rather than £ itself. For f:
“‘:“..I let v

N (x) = f(x), £ (x) = f(f (x)], f (x) [f (;)]~ ..

It turns out that if there exists a positive 1nteger n
-such~that £, 15 a contraction on I, then the fixed point
is also the fixed point of f in I, and the fixed

M po1nt can be found as before, by choosing any starting_

point X, and 1terat1ng the function f, even though f
itself is not a contraction. (It would be a challenging
exercise for an advanced student who can handle the proof
_a—njL%he contraction mapping principle in the Append1x to
) con§truct a proof for this extension of the pr1nc1p1e )
_ ‘This technique may also be combined with the use of in-
*itt“ veres, as~the following example will illustrate. N

I+ we

4. S Example 8

Suppose we w1sh to solve the equatlon
W % e* = x;
A rough sketch shows that we should expéct to find two
solut1ons, one between 0 and 1, the other greater than
two In Figure 8 we can see that if we take Xo to be any
p01nt to the left of _the larger solution, the Picard -
-sequence*wril*converge-tO“the_smaller~solut1on~—~The
approximate values obtained by starting at Xy, = 0 are:
0, .25, .3210, .3446, .3529, °.3558, .3568, .3572, .3573,
" .3574,

DR T I

i3

The reason that the-above. sequence converges ‘can be
can be seen by choosing our interval 1 cérefully and

observing that f is @ contraction on I. For example,

__._;f-'q:'-/ . . N .
T e ] T X R
X, ’ I 1 R
) 7 )
" Figure 8. The graph for Example §. -
if we let - .
I ={x:x<1}, 3
then £f: I + I, and for x in I we have }

<

f'(x)=%-ex. - R

Thus, by the law of the nean, for X, t <1, we have

HOREIOTIEN] Y0 FER TR \

where £ is between x and t. Thus,

€00 - HOTIES PR

7 Ix - tl.

Thus f is a contract1on on I with contractlon constant
r = e/d,

-

o If we try to reach the larger solution of z-e =X

by tak1ng i_”between the . solut1ons, we must fail, ds

. shown also in Figure 8. This behavior can also be

understood in terms of contraction mapp1ngs This

L




" time we take as an example‘I\= {x:

-“ root (try it for yourself with x;, = 3, for example), "the

-

x <2}, If we
iterate'f, letting £; (x) = £(x), £,(x) = f(f (x)),
£.(x) = f(f’(x)),..., as d1scdssed above, then it turns
out that f, is a contraction on I, and in fact for N
X, t < 2,~1t can be shown that
[£,(x) - £,(0)] < .9]x - t].

. .

-Thus, there is a unique fixed po1nt for %ex in-l and,

since we have already found one (approx1mate1y), the Picard
algorlthm cannot y1e1d the fixed _point to the right of\x = 2,

!

In- add1t1on, if we try to find the sccond solution of
the equat1on«z-e = x by choosing x, to the right of th1s
k2
sequence of 1terates diverges, increasing without bound
exponent1ally. " This behavior, too, is indicated in F1gure 8.

Thus, if we apply the Picard algorithm to any value
X, (other than the .second oot itself exactly!), the se-
quence of 1terates w111 not converge to the second, or
larger, root of- Te = X. However, we can find this second

i
.

*o

The graph of y = &nbx.

SNeo L

. R Figure 9.

P N : o

~

“root by applying the Picard algorithm to the inverse func- - .

tion, %n 4x, as described cn pp. 11-12. For example, if
we take I = {x: x 2 1. 4} (1 4 is just a little larger. than
£n4 where the slope of ze 15 1), then f is an expans1on .
or I, and the set of values assumed by X for x in I con-

tains I.‘ Thus, the inverse should be a contract1on, and ‘ N

is, as can be seen 1n F1gure 9.

"

|

|

|

- .

Now if we take I = { x:x > 1.5}, for example, theP ‘
N |

Anidx is a contraction on I, and we may solve the equation

&
Lnidx = x

by the Picard algorithm, starting at any point to the
right of x = 1.5, If we start at x = 2, we obtain the
sequence 2, 2. 0794, 2.1184, 2.1370, 21457, 2.1497,
2.1516, 2. 1525, 2.1529, 2.1531, 2. 1532, 2.1533, 2.1533,
++.. Thus,

¢nf4(2.1533)] =.2.1533,
so that ’ . 7’ g

e-1533 & 4(2.1533),

Fet 153 L3, : -
Thus, the larger fixed point of %ex is approximately
2.1533. ' "

3

Note.that in choosing a value for the left endpoint ot
of the interval I indicated above, it was not really '
necessary to ensure that 2n4x would be a contraction on I.
We chose 1. S wh1ch is to the right of _the point x =1
where the curve &n4x has slope one, and since the slope is

‘decreas1ug the mean value theorem shows that fn4x is a

contraction pn I for the choice we made.- However, we -
could have chosen instead-hny value to the right of 0.3575,
which is slightly larger than the first root of the equa-
tion-2nd4x = x. -(Recall that our approximation for this
root, which we obtained using the original equation

21
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- Example 8.

%ex ='x, wds 0.357¢ to.four ‘decimal places.) For
exanple, if we had taken I = {x: x 2.4}, then the
iterate f .would be a contraction on I, so the iteration

.- procedure would still yield the desired fixed point;

this example illustrates the combining of the two exten-
s1ons of the basic contraction mapping pr1nc1ple as
promised in the final sentence immediately preceding

(Try iterating the function £ndx starting with
Xy = .4, and follow the.iteration-both on the calculator:
‘and. geometr1c311y on a graph of the funct1on--you will see
the points coming closer together starting with the f1fth
app11cat1on of the funct1on )

-

Exercise 3
;a2 -

Solve -the equatlon lcoshx = X,

3 (Hint:

This problem is

_-'_"“““‘sfnﬁiar—to—tbe.pznb] in Example 8. You may need to know that

——————————

. it spreads out in the shadow region.
: called diffraction, and a diagram representing a simple

for f(x) =4§coshx the appropriate inverse function for this

problem is given by the formula f “¥(x) « &n (2x + /ixT = 1) in order
to find the larger solution: On some calculators the inverse
hyperbollc cosine Is available directly.) |

e P

N - -

5. 'FURTHFR EXAMPLES AND APPLICATIONS
) !

—

5.1 Example § ( . i

.

. N " i .
When a beam of light passes through a narrow slit,
This effect is .

model called Fraunhofer d1ffract1on is shown in Figure
10.

-

Diffraction

:Defractlng Screen
slit .
. ..
Figure 10. Experimental arrangement for obtaining the Fraunhofer . .

di ffraction pattern of a slngle slit. ‘ z

By an application of basic principles of optics,
it can be shown that the light intensities on'the screen -,
can be {approximately) expressed in the form

. i
1= a2 sinig ‘

82 » X o

where B is a suitably chosen spatial variable.
D. Halliday and R, Resnick,

(See
Physics.) The quantity

A=A, sing

is called the amplitude of the vibration. A problem of
-interest in optics is to determine the-location of the
maximumaintensities, thus we wish to optimize the function -

sing




We ‘have ' o
At = Aorgcos;i- sin 8’
*~ and we fgnd initial points by setting A' = 0:
A Bcos 8 - S1n8 = 0.

o o0 g2

.

The critical values tan be obtained by solving fhe,eduation

or tanx -= X, . \ D

.

3 «tan 8= 8,
The geometric picture if shown in Figure 11.

.
v 4
* 7

fod

g
]
— e —— e

I
~

3 S o
2 | 2

] Flgure ll. The graphs of y = tanx and Y= X

:& .
4 We see the first maximun 1ntens1ty at x = 0.

For larger values of x the fixed points will be near

pdd,mult;ples of #/2, such as 7n/2, 9n/2, .... We T e
" find-the location of the first nonzero intensity here,

using the Picard algorithm applied to the function

o = - . - ~

—--- ¥y = ® + arctan x, starting at x, = 0 (see Figure 12).
24 | IR
Q . '

RIPBA i Tt Provided A .

P

|
i
]
l

{ i
Fixed point

? -
Figure 12. The Picard algorithm for finding the smallest
positive fixed point of tanx , using the inverse.
- '

- o
. .

The resulting sequence of approximation is 0, 3.1416,

4.4042, 4.4891, 4. 4932 4.4934, 4.4934, .... The location..

of the first maximum intensity to the right 0 corresponds

to B = 4,4934, - :
- .

. »

2

Exercise & ] o .
Find the fixed point of tanx that lies between 3r/2 and
« 51/2 (i.e;, the location of the second maximum intensity to the
right of 0) in the Fraunhofer diffraction pattern. =

*

Exercise.5* ~ -
I In cavity resonators used in travellng-wave tubes the energy

-

storage ratio ' /H has an expression of the form

W 2 {a \
Ti - 351%§§%§ZL (e i? radians)

where et is vonstant. Use the Picard aigorithm to find the

#
See H.M. Nodeiman and F.“W., Smith, Mathematics for Electronics.

9 20
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mlm value of sinx (and then mu)t!ply the crltlcal value of
. - X by 2)to find the 'nlue of 8 that maxlmlzes the energy storage ¢

value will also minimize D?,

~ iL(D’)'= ax® + -4x - 4,

and we proceed -

.

ooy - ratlo. O . \, N ' R
e TR 3 e .
-F - ! - -—so we wish to solve the equatmn S .
‘“‘;‘\".752 Bx.unplelo ’ . ‘ I o x3+x-1=0. -
N - N » Y R . - ‘- .
Sl /;n submarme lotation problems, it is often - ,We can arrange th1s as a fixed point problem:
e mportant to f:ind the submarine s closest point- of x‘ + x =) TR -
o T onobuoy in the water. Suppose B /
e L x(xz +1) =1 e
= that a sonobuoy is located  at (2 2-) on a. rect;ngurar' - /
SRR ;system and that a submarine travels on a _parabolic - - - 1 -5 —_ .
=~ *" " path,*along the curve y = X?,  (See Figure' 13.) TFor - 1.+ x2 A\
vl 2 . ‘ .
< ‘ any pomt (x x*) on‘the parabola, .the d1stance Xo the A Tough sketch of the graph of £(x) = - +1 - (see :
I f;‘s°n°b“°y is . Figure 14)>shows that f is a concentration mapping ‘ _—
Soesl . g D= [(x - z)z + (xz + )2]? . on the whole line, so we Jmplement thegl:icard algorithm,
ER . 17,3 . starting at x, = 0, to obtain the sequéhce 0, 1, .5,-
- = (x% + 2x? - 4x ‘+ T) - A . .-
A _W\e‘wish‘to find the critical x that minimizes D; this - -
. T Trobee- . ’ - \
- S ~:" K Y
s - - ] * . \‘
N e <% YA “
- Tt I ' -
‘ T y =2 -0 .
3 U cPA / Submarine track - —e_—_ .
el \ . e in two dimensions. . .
. T 1T \ .
‘ = . ‘ \\; . . e Figure 14. Graph of y = — 5 .
P . - $ - : S :.*-’. X . 1 4+ X
O .. N T N 7 Y AR
o D €2~ sonobuoy’ @ T - . ' :
Figure 13. Olagram for.Example 11, i
- Nles - : | '-
L - ¢ LT . 27 .
St . : 21 . \ 22 ;
;?‘32“ ’ {'-;" . R /z ) o ) . , : ) - \\
'{‘T’; < . ey . . . , .
».3_ LT e N T <o e Y FOU




.8, .6098, .7290, .6530, .7011, .6705, .6899,
.6775, .6854, .6804, ..., .6823, .6823,

o 0 .

4***—-—~~>wWe*conc1ude"this“éection with -an-example—that -is
presented in Wylie's. Advanced Engfneer1ng Mathemat1cs.

-

« S 3 Example 11

" Thus the CPA of the submarine to the sonobuoy is approxi-
mately the point (.6823, (.6823)2) or (.6823, .4656).

. perfectly insulated against heat flow. The rod is

7 the right at x = L. The left end is maintained at
. temperature.u(C,t) =-0- for all time t 20, the rlght

ture 0. If the 1n1t§al temperature distribution in
A the rod is given by

) u(x,0) = g(x), *

the problem is to find the temperature u(x,t) at any

"~ law and a "separat1on of variables" argument, Wylie
shows that-the solution can be expressed in the form

RS . ‘. -

. 124722
(6) u(x,t) = Z B Ant/a sini_x.
: " . n=1. 1, n
. What is important for us is the fact that the values
A arg‘given'by . :

: n . i
o N
17"

where the zl,,zz, ees are the pos1t1ve roots of an-
. equatlon of the form ’ . s
A, 3 - .

> , tanz = -az
YT Whére 4 IS a positive contant (see F1gure 15) For

example, if o = .25, then we must solve the equation
of the form

-l

I3 sanuer Todof J.engl:n E-has—its—curved—surface

T located along the x-axis with its left end at x = 0,

end radiates heat freely into air of constant tempera-

point 0 ¢ x < L and t > 0. By an application of Stefan's

23

Figure 15. Sketch showing 2;, 22; 25 for Example 12.

in order to find the eigenvalues A,

A

2

We

obtain the Picard sequence from the algorithm.

y = 7 + arctan (:.ZSx):

0, 3.1416, 2.4758, 2,5873, 2.5674,

2,.5704, 2.5704, .... Thus

y. = 2.5704
S A

2.5710, 2.5703,
z, = 2,5704, and the f1rst
ezgenvalue can be obtained from the relation

When we have found several valueé of Ah, we
may substitute them into Equation (6) ‘and thereby

distribution u(x,t).

-

4

find series approximations.for._the. temperature =

.

Exercise 6.

Find the second root z, In Example 1% with a = .25,

\

-

24




6. COMPARISON WITH NEWTON'S METHOD

algorithm also a viable alternative to Newton's method.

- = . in many problenms,
'y -~ ' There are'many numerical methods of solving real . . The second reason for learning this method is =
‘equations of the form | . that the contraction mapping principle.can be formu-
- g(x) = 0. : . ‘ated in more general terms to solve a.much wider class
- o s ‘ of problems than real equations. For example, it can be .
y e o= (This is equivalent to the problem of solving pro € 8 § ple,

- ] ‘used to solve systems of linear equations, nonlinear ,
- £(x) = x, - . : equations in higher dimensions, diffefential equations, -
L \‘ "since wemay writethe latter as- - K and integral equations. (See, for example A. W. Naylor

~

f(x) " . — =N and G.—R. —Sellv—L4nea4;Ope;a&o;—$heory—1n—$eienee—and—————————-——
\ ) Eng1neer1ng on differential equat1ons they also have' :
a nice discussion of the relation of the principle to
closed loop feedback -systems.) Concrete applications on
the real line serve as a solid foundat1o§ for exploring

<o

o

and simply let g(x) = £(x) - x.) One popular such .
. method is called Newton's thhad which is carried out
by choosing a start1ng po1ntgx° carefully and then

+

R app1¥1ng the algorithm * | - 1 1nterest1ng app11cat1ons in more advanced settings,
: ; . £(x.)
“ X =X - 1
n+l n fTx) ° -
(%] - n
Newton's method enjoys many advantages; for example, _— o

the-resulting numerical sequence often converges faster -
. thqn that obtained from the contraction mapping princi-
o ple. There-is rather general agreement that Newton's'
- method is the superior of the two. (A comparison of .- ‘
s+ .these methods can be found in M.L. Dertouzos, et al. ) . . \ . . \
N Systems, Networks, ‘and Computation. Basic Concepts.} ) o ) '

. ¢\
>

:l If Newton' method Zs better,.you may well ask, . > ' . o
“Why bother W1€h Picard at al1?" There are two primdry
reasons. First, there is }eally not a dichotomy between

e these methods, i.e. you need not choose between thenm, -

Learn both!' Because it is simpler énd-ofteﬁxeasier

-~ to implement.on a (programmable or nonprogrammable)

- ._calculator, the con;rac;;gn_mapp;ng_prlnciple.serves..-.~—-u-—~m=- e i e e AL b Mot
« . as an excellent irtroduction to numerical mgthods.

f*~ <" The simplicity and ease of implementation, coupled . :

: with its range of" ‘applicability make the P1card' . ’ 31

. .

L g I A S . ) . . % ) _
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", 1. MODEL EXAM ' .- " 8. ANSWERS TO EXERCISES ' |
RE  Solve the following equations uring the contraction mapping . 1. -2.0000; ° - . j—
=== privchpte~(Pirard*s algorithm) : ] — 3 —
) R . 2. . 1.3720. NS
) . -x . ° . |
S A 3. .589?;_2.1268. : |
. " \ |
EE I VR, K b L7253, ;
‘fiﬂ S e '"'sin."z'x = x, ' ‘ 5. 2.3310. . . | g
. ‘ 6.  5.3540. , |
i 2 Use the contraction mapping princlple, together with a little
e - mampulatlon. to solve the equations: - \ ~ . - -
“a, . sinxmad; A " 9. SOLUTIONS FOR MODEL EXAM' -
b. cot x = x (find the solution that lies between 0 ' . ¢ ‘
- and ). \ ' : 1. a. L5671 ‘
' b.  .7531; |
c. .9477. f
) .
) 2. a. Use i‘-;‘u = x; then x = .8767. 1‘
. . |
- b. Use arctan %- x; then < = .8603. -
- — S , \ . e
T ; o
- — |
- c‘ . ]
i ‘ S
‘\
—‘—» ip—_— @A -y . & o — — - ———— . —_— o — - - — - - — - . ———— e —— - e e = ———— . m o —— - _() “ - — —— e ey ————
Y
2 ’ ;
. ') -
‘ 27 28 *
“ o ‘.
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1. APPENBIX
4@9§f af the baata eontraat»cn mappzﬁg prwnczple.
Fer defmitenes;, suppbse thatHI s sn mterval of the
forn {x. a¢ x'< b}, that & I» I, 4nd “that there
ex:sts a posit1ve constant such zhaf for all x, t

1n 18 we have

Al

'-if{X) - f(t)! <rix - tf, R

"Lét‘xb be any point in I, and 1et
%, w (X, x, » £(x), X, = £(x))
Tﬁ?ﬁ:i'#“;"w}““A”'"" T T -
% -3, = L) - £33 €l - o1,
]f(xz) -f(x‘)l 'i'|xz -xxlirzlxl -x,1,
lxy x| o= lE(x,) - £(x,) |

1A

. Ix, -x,|

A

—

<rlx, - x|<rd|x, - x,ls

It-can be shown by mathematical induction that for

every n,
’ n
|Xp4p - % al £ Tlx, - xol.

4

Thus, for all pos1t1ve 1ntegers n and k we have g

series

_Ixn+k Xpl £ IXgep - I * lxn+k " Xpek-1l

B ¢ r“*r*) LR N

_— . i
M - ' n+k‘1 i s

Slxy - xp 1 or
. i=n
- < lxy - Xol Spag-q - Sp-1)

BN where {s }m-o is the sequence of partial sums for the

§ ."Since this sequence is a Cauchy sequence (remember

0 < r <1, so the geometric series converges), it
follows that ths sequence
. . N . ‘
© >
- X} .
o ned \ ,
4
is also Cauchy, and hence converges. Let | | 1
lim X, =X, ' ,
- N+ . PRI
e [ Now—the condition—that- f-be-a—ton?rattron‘arso“-'“"—-~-f-—~

1mp11es that!f is continuous (for a given ¢ > 0 take

§=¢€¢ in app1y1ng the def1n1t10n of continuity).
Therefore, _ '

B f(x) = f{1lim x ) = lim f(x ) = lin x

n+o n-+o L ]

n+l - %o

sy X is a fixed point of f. Moreover the fixed point
of £ (in I) is unique, because if x' is any f1xed point
of £ in I, then

. Ix - x'| = If(xs - £x)| < r|x - x'],

from which

1 -'r)x :'x'l < 0.

But 1 - r > 0, and since |x - x'| >0, we must have

0<(-n1)x - x'|‘£0,
from which .
(1 -r1)x - x'|
and finally !
L Ix- x|

so that x = x', and the fixed point is unique.
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; 1 . : - ) Retirn to:
{ STUDENT FORM 1 N EDC/UMAP
. ) 55 Fhapel St.
Request for Help Newton, MA 02160

e

|

Student: If you have trouble with a specific part of this unit, please fill

out this form and take:it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name N Unit No.
Page .
Model Exam
: Secti - - ;

-C> Upper OR es oq_____T___. OR Problem No. X

QOmiddle Paragraph Text

C) iower . Problem No.
Descr{ption of Difficulty: (Please be specific) i

I
\
[N

!

I .

. .
o N <, »

L oy
.t ?

Instructor: Please indicate your resolution Pf the difficulty in this box.

(::) Corrected errors in materials. List cofrections‘hegé:

i

A —

(::) Gave student better explanation, example, or procedure than in unit.
" Give brief outline of your addition here:

1

(::) Assisted student in‘acqu&ring general learning and problem-solving
skills (not using examples from this unit.)

4 .

2
<

)]

Instructor's Signature

v . . Please use reverse if necessary.
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'f ) . Return to: -

R ‘ STUDENT FORM 2 EDC/UMAP |
55 Chapel St. '
]

|

o : . : Unit Questionnaire Newton, MA 02160
»
Name i . -l Unit No. Date )
Institution ° . Course No.

Check the choice for eaqh question that comes closest to your personal opinion,
1. How useful was the amount of detail in the unit? ‘ |

Not enough detail to understand the unit -

Unit would have been clearer with more detail

Appropriate amount of ‘detail i .

Unit was occasionally too detailed, but this was not distracting
___Too much detail; I was often distracted

* 2. .How helpful were the_ﬁrobled aﬁswers? ! '

Sample solutions were too brief; I could not-do the 1néermediate steps
Sufficient information was given to solve the.problems
___Sample solutions were too detailed; I didn't peed them

3. Except for fulfilling the prere uisites, how much did you use other sources (for
example,. instructor, friends, or other books) in order to understand the unit? .
A Lot Somewhat “A Little ~___Not at all".
4. How long was this unit in comparison to the amount of ‘time you generally spend on
a lesgon ﬁlgc;ufe and homework assignment) in a typical math or science course?
! Much °  .Somewhat " About Somewhat Much ;
o Longer Longer . the Same —_Shorter Shorter
5. Were any of the following parts of the unit confusing or distracting? (Check
as many as apply.) - ' .
° Prerequisites . . I
' -- Statement of skills and concepts (objectiveg)
Paragraph headings . .
) Examples ' )
Special Assistance Supplement (if present) ,
: Other, please explain - o . .

" 6. Were any of the following parts of the unit particulérly helpful? (Check as many

as apply.)
’ Prerequisites ;
Statement of skills and concepts (objectives) .
~ _ Examples X ; '
Préblems | .

Paragraph headings .
Table of Contents - ‘ .
Special Assistance Supplement (if present) /
Other, please explain

i

Please describe anything in the unit that ydu did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of
this sheet if you need more space.) )




